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Geo-Metric-Affine-Projective 
Computing

Speaker: Ambjörn Naeve, Ph.D., Senior researcher

Affiliation: Centre for user-oriented IT-Design (CID) 
Dept. of Numerical Analysis and Computing Science
Royal Institute of Technology (KTH)
100 44 Stockholm, Sweden

email-address: amb@nada.kth.se

web-site: cid.nada.kth.se/il

Projective Drawing Board (PDB)

PDB is an interactive program for doing plane projective 
geometry that will be used to illustrate this lecture.

PDB has been developed by 
Harald Winroth and Ambjörn Naeve
as a part of Harald’s doctoral thesis work at 
the Computational Vision and Active Perception 
(CVAP) laboratory at KTH .

PDB is avaliable as freeware under Linux.

www.nada.kth.se/~amb/pdb-dist/linux/pdb2.5.tar.gz

Geometric algebra in n-dim Euclidean space

A k-blade = blade of grade k :   Bk = b1 ∧ b2 ∧K∧ bk

Geometric algebra: G = Gn ≡ G(Vn )has 2n dimensions.

Underlying vector space Vn
with ON-basis e

1
,...,e

n
.

M = M kk=0

n
∑A multivector is a sum of k-vectors:

A k-vector is a sum of k-blades:   M k = Ak + Bk +K

are linearly independent.

Hence:

Note:   Bk ≠ 0 ⇔ b1,K,bk

the grade of a blade is the dimension of the 
subspace that it spans.

Blades correspond to geometric objects

1 line segments

2 surface regions

3 3-dim regions

length

area

volume

k k-dim  regions k-volume

... ... ...

blade 
of grade

equivalence class 
of directed

equal orientation 
and
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The dual of a multivector x:

  I = e1 ∧ e2 ∧K∧ en

Dual(x) = xI−1

A pseudoscalar:   P = p1 ∧ p2 ∧K∧ pn

P[ ] = PI −1

A unit pseudoscalar:

The bracket of P:

Pseudoscalars and duality
Def:   A n-blade in  Gn is called a pseudoscalar.

is a (n-k)-blade.A*
Note:

Notation:

If A is a k-blade, then

Dual(x) = x*

The subspace of a blade

To every non-zero m-blade   B = b1 ∧K∧ bmFact:

there corresponds a m-dim subspace  B ⊂ Vn

If   e1,e2 ,K,em is an ON-basis for  B

then    B = det bik( )e1 ∧ e2 ∧K∧ em

and if  bi = bikekk=1

m
∑ for  i = 1,…,m ,

Fact:

  B = Linspan{b1,K,bm}with  

= Linspan{b ∈ Vn : b ∧ B = 0}.

  = det bik( )e1e2 Kem .

Dual subspaces <=> orthogonal complements

If A is a non-zero m-blade Fact: A* = A ⊥.

We can WLOG choose an ON-basis for VnProof:
such that

  A = λe1e2 Kem

We then have

A* = AI −1

  = ±λem+1Ken

which implies that 

A* = A ⊥ .

  I = e1e2 Kenand .

The join and the meet of two blades

Def:   The join of blades A and B
is a common dividend of lowest grade.

Def:   The meet of blades A and B
is a common divisor of greatest grade.

such that A = BC = B ∧ C we say that

A is a dividend of B and B is a divisor of A.

The join and meet provide a representation in geometric 
algebra of the lattice algebra of subspaces of Vn

.

Given blades A and B, if there exists a blade CDef:

Join of two blades <=> sum of their subspaces

Join(A, B) = A ∧ B
For two blades A and B with A ∧ B ≠ 0
we can define: .

Def:

A ∧ B = A + B and A ∩ B = 0In this case: .

a
b

a ∧ b = a + b = {λa + µb : λ, µ ∈R}

0 ≠ a,b ∈V3Example:

a ∩ b = 0

a ∧ b

Meet of blades <=> intersection of subspaces

Meet(A, B) ≡ A ∨ B = (A* ∧ B* )I .then:

Def: If blades A, B ≠ 0 and A + B = Vn

A ∨ B = A ∩ BIn this case: .

Note: The meet product is related 
to the outer product
by duality:

Dual(A ∨ B) = Dual(A) ∧ Dual(B)

A ∨ B( )I −1 = (A* ∧ B*)II −1 = A* ∧ B*
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Dualisation:

  x a x* = xI−1
G → G*

Dual outer product:

G× G → G

/

G× G → G/

* * *

Dual outer product

x ∨ y

x* ∧ y* = (x ∨ y)*

= ((xI−1) ∧ (yI −1))I

e1

e2

e3

A* = e1 ∧ e2( )I −1

Example:

= e1e2( )(e3e2e1 ) = (−1)2 e3e1e2e2e1
= e3

B* = e2 ∧ e3( )I −1 = e2e3( )(e3e2e1) = e1

A ∨ B = (A* ∧ B*)I = e3 ∧ e1( )(e1e2e3 )= −e2

A* =

= B*

A

B

= −A ∨ B

V3 I = e1 ∧ e2 ∧ e3 = e1e2e3,
A = e1 ∧ e2 = e1e2 B = e2 ∧ e3, = e2e3

A ∨ B = A ∩ B
Hence:

eye

1-dim subspace through the eye

point at infinity

hor
izo

n

1-d subspace parallell to the ground plane

ground planepoint

Projective geometry - historical perspective

parallell
lines

line at
 infinity

Pn = P Vn+1( )
A point p is a 1-dim subspace

n-dimensional projective space Pn

= the set of non-zero subspaces of Vn+1
. 

A line l is a 2-dim subspace

(spanned by a 1-blade a).

(spanned by a 2-blade B2).

p = a = {λa : λ ≠ 0} Ý = a Ý = αa , α ≠ 0 .

l = B 2 = {λB2 : λ ≠ 0}

Let B denote the set of non-zero blades of the geometric 

algebra  G(Vn+1) . 

Ý = B2 .

BŒ B ŒB Pn
.

Hence we have the mapping

a b

{x ≠ 0 : x ∧ a = 0}

{x ≠ 0 : x ∧ a ∧ b = 0}

0 ≠ a,b, x ∈V3

The projective plane P2

P2

a ∧ bLine:

The intersection of two lines in P2

P2
A ∨ B

A
B

A, B ∈ {non-zero 2-blades in G3}.
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p q
r

Collinear points

p ∧ q ∧ r = 0
The points p, q, r are collinear

.if and only if

p ∧ q

P ∨ Q

Q
P

R

Concurrent lines

(P ∨ Q) ∧ R = 0
The lines P, Q, R are concurrent

.if and only if

A = b ∧ c
′ A = ′ b ∧ ′ c 

B = c ∧ a
′ B = ′ c ∧ ′ a 

C = a ∧ b

p = A ∨ ′ A 

p

q
q = B ∨ ′ B 

r r = C ∨ ′ C 
′ C = ′ a ∧ ′ b a

′ a 

P = ′ a ∧ a

b

′ b 

Q = ′ b ∧ b

c

′ c 

R = ′ c ∧ c

Desargues’ configuration

p ∧ q ∧ r ≡ J ′ J (P ∨ Q) ∧ R

Desargues’ configuration (cont.)

Leads to:

J = a ∧ b ∧ c = [abc]I
′ J = ′ a ∧ ′ b ∧ ′ c = ′ a ′ b ′ c [ ]I

P = ′ a ∧ a

Q = ′ b ∧ b

R = ′ c ∧ c

p = A ∨ ′ A 

q = B ∨ ′ B 

r = C ∨ ′ C 

= (b ∧ c) ∨ ( ′ b ∧ ′ c )

= (c ∧ a) ∨ ( ′ c ∧ ′ a )

= (a ∧ b) ∨ ( ′ a ∧ ′ b )

= 0 if and only if = 0 if and only if
p,q,r are collinear P,Q,R are concurrent

p, q, r are collinear iff P, Q, R are concurrent.

Desargues’ theorem

P

Q

R

B

A
C

A’

C’

B’

L

Let a,b,c, ′ a , ′ b be five given points in P2

Consider the second degree polynomial given by

p(x) = ((a ∧ ′ b ) ∨ ( ′ a ∧ b)) ∧
((b ∧ x) ∨ ( ′ b ∧ c)) ∧
((c ∧ ′ a ) ∨ (x ∧ a)) .

It is obvious that p(a) = p(b) = 0
and easy to verify that p(c) = p( ′ a ) = p( ′ b ) = 0

Pascal’s theorem

.

Hence: p(x) = 0 must be the equation
of the conic on the 5 given points.

.
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= ((a ∧ ′ b ) ∨ ( ′ a ∧ b)) ∧ ((b ∧ ′ a ) ∨ ( ′ b ∧ c)) ∧

((c ∧ ′ a ) ∨ ( ′ a ∧ a))

Verifying that p(a´) = 0

p( ′ a ) =

Ý = ( ′ a ∧ b) ∧ ′ a = 0

Ý = ′ a ∧ b

Ý = ′ a 

same point

same line

The three points of intersection of opposite sides 
of a hexagon inscribed in a conic are collinear.

Pascal’s theorem (cont.)

Geometric formulation:

p( ′ c ) = ((a ∧ ′ b ) ∨ ( ′ a ∧ b)) ∧
((b ∧ ′ c ) ∨ ( ′ b ∧ c)) ∧
((c ∧ ′ a ) ∨ ( ′ c ∧ a)) = 0.

Hence, a sixth point ′ c lies on this conic if and only if

which Blaise Pascal discovered in 1640, at the age of 16. 
This is a property of the hexagrammum mysticum, 

s

s = (b ∧ ′ c ) ∨ ( ′ b ∧ c)
t = (c ∧ ′ a ) ∨ ( ′ c ∧ a)

t

r = (a ∧ ′ b ) ∨ ( ′ a ∧ b)

r

a
b

c

′ a 
′ b 

′ c 

Pascal’s theorem (cont.)

r ∧ s ∧ t = 0

1

2

3

4

5

6

/1 4=

/2 5=

/3 6=

P

Q

R
R’

P’

Q’

L

Pascal’s theorem (cont.)

The three points of intersection of opposite sides 
of a hexagon inscribed in a conic are collinear.

P

Q R

P’
Q’

R’
L

If the conic degenerates into two straight lines, 
Pappus’ theorem emerges as a special case of Pascal’s.

Pappus’ theorem (ca 350 A.D.) Outermorphisms

f : G → GA mapping
is called an outermorphism

if

(i)

(ii) f (t) = t ∀t ∈R

(iii) ∀x, y ∈Gf (x ∧ y) = f (x) ∧ f (y)

(iv) f (G k ) ⊂ Gk ∀k ≥ 0

Def:

f is linear.
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The induced outermorphism

denote a linear mapping.T : V → VLet

T induces an outermorphism T : G → G
given by

T(λ) = λ
and linear extension.

  T(a1 ∧K∧ ak ) = T(a1) ∧K∧ T(ak )
λ ∈ R,

Fact:

T maps the blades of VInterpretation:

T maps the vectors of V.
in accordance with how

denote a symmetric linear map,T : Vn+1 → Vn+1
Let

The corresponding quadric (hyper)surface  Q in 

Q = {x ∈Vn+1 : x ⋅T(x) = 0 , x ≠ 0}.

The polar of the k-blade A with respect to Q

Polarization with respect to a quadric in Pn

which means that T(x) ⋅ y = x ⋅T(y) ∀x, y ∈Vn+1
.

Def:

is the (n+1-k)-blade defined by

Pn

is given by

PolQ (A) ≡ T(A)* ≡ T(A)I −1
.

,

Polarization (cont.) 

PolQ(PolQ (A)) Ý = A
For a blade A we have

Note:
PolQ (A) ≡ AI −1 ≡ A*

In this case

T = id ⇒

and polarization becomes identical to dualization.

Q = {x ∈Vn+1 : x ⋅ x = 0 , x ≠ 0}.

Fact:

(i)

(ii) If A is tangent to Q
then  PolQ(A)  is tangent to Q .

If x is a point on  Q, 
then  PolQ(x)  is the hyperplane

Especially:

which is tangent to Q at the point x.

x

PolQ (x)

Q

x
PolQ (x)

Q

x

PolQ (x)
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x ∧ y x

Q

PolQ(y)

y
Polarity with respect to a conic 

The polar of the join of x and y
is the meet of the polars of x and y

P2

PolQ (x)

PolQ(x ∧ y)

PolQ(x) ∨ PolQ(y)

PolQ(x) ∨ PolQ(y)
=

=

PolQ(x) ∨ PolQ(y)

x

y

x ∧ y

Q

= (y ⋅T(x))I −1

= x ∧ (T(y)I −1)

y ∧ Pol Q (x) = 0
i.e. the point y lies on the polar of the point  x

Hence:

Polar reciprocity

= y ∧ (T(x)I −1)
= (x ⋅T(y))I −1

Let x, y ∈ Vn+1
represent two points in Pn

.

Then we have from the symmetry of  T :

y ∧ T(x)*

.= x ∧ T(y)*

x ∧ PolQ(y) = 0⇔

if and only if  x lies on the polar of  y.

1

4

2

5

3

6
6

3

2

5

1

4

Q

Brianchon’s theorem 

Pascal line 
(1640)

Brianchon point
(1810)

The dual map

Let f : G → G be linear,  

and assume that

˜ f (x) = f (xI)I −1

G G
f

˜ f 
G G

* *

˜ ˜ f 
G G

* *

f (x) = ˜ f (xI −1)I = ˜ f (xI −1)I 2I −2I
= ˜ f (xI −1I 2 )I −1 = ˜ f (xI)I −1 = ˜ ˜ f (x)

~f ( x)˜ f ( ˜ x ) =
Def: The dual map ˜ f : G → G

is the linear map given by

Note:

f=

I 2 ≠ 0 .

Polarizing a quadric with respect to another

Fact:

Let S : G → G and T : G → G
be symmetric outermorphisms,

P = {x ∈G : x ∗ S(x) = 0 , x ≠ 0}
Q = {x ∈G : x ∗ T(x) = 0 , x ≠ 0}

be the corresponding two quadrics.

Polarizing the multivectors of the quadric P
with respect to the quadric Q
gives a quadric R

and we have
  x ∗ (T o ˜ S oT(x)) = 0
x ∈ P ⇔ PolQ (x) ∈ R

with equation
.

,

and let
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P
Q

R

x ∗ T(x) = 0Q :
x ∗ S(x) = 0P :

R :   x ∗ (T o ˜ S oT(x)) = 0

Polarizing the quadric
with respect to the quadric

generates the quadric

The reciprocal quadric Cartesian-Affine-Projective relationships

x

x*

xŒVn

Vn+1 Vn yŒ y*
= (y ⋅en+1)

−1 y − en+1
ŒVn

x*
*

= y*

y

(y ⋅en+1)
−1 y

e1
en

Vn

Cartesian space

x*

The affine part of 
Projective Space:

Œ

y Œ
well
defined

Vn+1

en+1

Affine spaceAn

x* Œ= x + en+1 An

Pn Vn

Pn Vn

The intersection of two lines in the plane

A
BC

D
P

a,b,c,d
*(  ) A,B,C,D
*(  )p

p

/

/

= (A B) /(C D)P

d

c
b

a

Affine plane

e3

Cartesian planeR2

The intersection of two lines (cont.)

P = (A ∧ B) ∨ (C ∧ D)
= A ∧ B ∧ C[ ]D − A ∧ B ∧ D[ ]C

A ∧ B ∧ C[ ]= A ∧ B ∧ C( )I −1

= (a + e3) ∧ (b + e3 ) ∧ (c + e3)( )e3e2e1

= (a − c) ∧ (b − c)e2e1

= (a − c) ∧ (b − c) ∧ (c + e3 )( )e3e2e1

= (a − c) ∧ (b − c) ∧ c( )e3e2e1 +
(a − c) ∧ (b − c) ∧ e3( )e3e2e1

= (a − c) ∧ (b − c)e3( )e3e2e1

0 =

contain  e3

does not 

≡ α

= αD − βC

The intersection of two lines (cont.)

= A ∧ B ∧ D( )I −1

In the same way we get

= (a − d) ∧ (b − d)e2e1

Hence we can write p as:

p = * P 
= ((αD − βC) ⋅e3 )

−1(αD − βC) − e3

= (α − β)−1(αd + αe3 − βc − βe3) − e3

= (α − β)−1(αd − βc)

contain  e3

does not 

contain  e3

does not 

β = A ∧ B ∧ D[ ]

= *(αD − βC)

r

t
= t(s+ds)t1

u
u1

= -t(p-m)t
= - t1(p-m1)t1

m(s+ds)

=m(s) =
s

M

lim
dsÆ0

/

/(m u) /(m1 u1)=

= m(s)

.

p

q

m m1

in-caustic

out-causticcurvature centre
of the mirror

Reflection in a plane-curve mirror
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Reflection in a plane-curve mirror (cont.)

Making use of the intersection formula deduced earlier

we get

q − m =
((p − m) ⋅ t)t − (p − m) ⋅n)n

1− 2 Ý Ý m 
(p − m)2

(p − m) ⋅n

n =
Ý t 
Ý t 

and introducing for the unit mirror normal

This is an expression of Tschirnhausen’s reflection law.

Reflection in a plane-curve mirror (cont.)

u

r

p

q

m

v

1
u − m

±
1

q − m
=

2
v − m

Tschirnhausens
reflection formula
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